
Modern Assembly Language Programming
with the

ARM processor
Chapter 7: Integer Mathematics

1 Introduction

2 Complement Math

3 Signed and Unsigned Binary Integers

4 Binary Multiplication

5 Binary Division

Binary Addition

Binary addition works exactly the same as Decimal addition
Except that the result of each column is limited to 0 or 1

1

7 5
+ 1 9

9 4

=

1 1

0 1 0 0 1 0 1 1
+ 0 0 0 1 0 0 1 1

0 1 0 1 1 1 1 0

Subtracting by Adding – Base 10
This is called 10’s complement arithmetic.

Complement
Table
0 9
1 8
2 7
3 6
4 5
5 4
6 3
7 2
8 1
9 0

3 8 4
− 5 6

3 2 8

=

3 8 4
9 4 3

+ 1
1 3 2 8

The 9’s complement of 56 (in three digits) is 943.
The 10’s complement of 56 in three digits is 944.

Adding the 10’s complement of x is the same as subtracting x.

Subtracting by Adding – Binary

This is called 2’s complement arithmetic.∗

Complement
Table
0 1
1 0

0 1 0 1 1 1 0 0
− 0 0 1 1 0 0 0 1

0 0 1 0 1 0 1 1

=

0 1 0 1 1 1 0 0
1 1 0 0 1 1 1 0

+ 0 0 0 0 0 0 0 1
1 0 0 1 0 1 0 1 1

The 1’s complement of 110001(in eight bits) is 11001110.
The 2’s complement of 110001(in eight bits) is 11001111.

Adding the 2’s complement of x is the same as subtracting x.

Therefore, the 2’s complement of x is the same as −x, and that is one way to store
negative numbers in the computer.

∗9210 = 10111002, 4910 = 1100012, 4310 = 1010112,

Signed and Unsigned Integers

Numbers can be interpreted by the programmer as signed or unsigned.

The computer treats them both the same.
Given an 8-bit integer, the programmer can consider it to hold:

an unsigned value between 0 and 255, or

a signed (two’s complement) number between −128 and +127.

Binary Unsigned Signed
00000000 0 0
00000001 1 1

...
...

...
01111110 126 126
01111111 127 127
10000000 128 -128
10000001 129 -127

...
...

...
11111110 254 -2
11111111 255 -1

Base Conversion of Negative Numbers

Converting a signed 2’s complement number from binary to decimal.

1 If the most significant bit is ’1’, then
1 Find the 2’s complement

2 Convert the result to base 10

3 Add a negative sign

2 else
1 Convert the result to base 10

Number 1’s Complement 2’s Complement Base 10 Negative
11010010 00101101 00101110 46 −46

1111111100010110 0000000011101001 0000000011101010 234 −234
01110100 Not negative 116

1000001101010110 0111110010101001 0111110010101010 31914 −31914
0101001111011011 Not negative 21467

Base Conversion of Negative Numbers

Converting a negative number from decimal to binary.

1 Remove the negative sign

2 Convert the number to binary

3 Take the 2’s complement

Base 10 Positive Binary 1’s Complement 2’s Complement
−46 00101110 11010001 11010010
−234 0000000011101010 1111111100010101 1111111100010110
−116 01110100 10001011 10001100

−31914 0111110010101010 1000001101010110 1000001101010111
−21467 0101001111011011 1010110000100100 1010110000100101

Addition, Subtraction, and Negation – Examples

2 3
+ 1 5

3 8

=
0 0 0 1 0 1 1 1

+ 0 0 0 0 1 1 1 1
0 0 1 0 0 1 1 0

2 3
− 1 5

8

=
0 0 0 1 0 1 1 1

+ 1 1 1 1 0 0 0 1
1 0 0 0 0 1 0 0 0

− 2 3
+ 1 5
− 8

=
1 1 1 0 1 0 0 1

+ 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0

− 2 3
− 1 5
− 3 8

=
1 1 1 0 1 0 0 1

+ 1 1 1 1 0 0 0 1
1 1 1 0 1 1 0 1 0

Long Multiplication

The result of multiplying an n bit number by an m bit number
is an n+m bit number

1 0 1
× 8 9

9 0 9
8 0 8
8 9 8 9

=

0 1 1 0 0 1 0 1
× 0 1 0 1 1 0 0 1

0 1 1 0 0 1 0 1
0 1 1 0 0 1 0 1

0 1 1 0 0 1 0 1
0 1 1 0 0 1 0 1

0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1

Long Multiplication - Signed vs Unsigned
The result depends on whether you are doing signed or unsigned multiply!

7 3
× −3 9

6 5 7
2 1 9

−2 8 4 7

=

1 1 0 1 1 0 0 1
× 0 1 0 0 1 0 0 1

1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1
1 1 1 1 1 1 1 0 1 1 0 0 1
1 1 1 1 0 1 1 0 0 1
1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1

7 3
× 2 1 7

5 1 1
7 3

1 4 6
1 5 8 4 1

=

1 1 0 1 1 0 0 1
× 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 1 1 0 1 1 0 0 1
0 0 1 1 0 1 1 0 0 1
0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1

The 2’s complement of 0011110111100001
is 1100001000011110+1= 1100001000011111

You can not always use an unsigned multiply and negate the result!

Algorithm for Unsigned Multiplication – Part 1

To multiply two n bit numbers, you must be able to add two 2n bit numbers.

Assume we have x in r1:r0 and y in r3:r2
(The high order words are in the high-order registers)

and we want to calculate x= x+y
ARM Assembly:

1 adds r0,r0,r2 @ add the low-order words, and
2 @ set flags in CPSR
3 adc r1,r1,r3 @ add the high-order words plus
4 @ the carry flag

Early ARM processors did not have a multiply instruction.

We will show how to multiply two 8-bit numbers to get a 16-bit result.

The same algorithm works for numbers of any size.

Algorithm for Unsigned Multiplication – Part 2

Given two 8-bit numbers, x and y,
where x is the multiplicand and y is the multiplier:

1: Extend the multiplicand x to 16 bits.
2: Set a 16-bit register, a, to zero,
3: while y 6= 0 do
4: if y is an odd number then
5: a← a+x
6: end if
7: Logical shift y right one bit
8: Shift x left one bit
9: end while

Algorithm for Unsigned Multiplication – Example

Binary multiplication is a sequence of shift and add operations.

x= 01101001 and y= 01011010

a x y Next operation
0000000000000000 0000000001101001 01011010 shift only
0000000000000000 0000000011010010 00101101 add, then shift
0000000011010010 0000000110100100 00010110 shift only
0000000011010010 0000001101001000 00001011 add, then shift
0000010000011010 0000011010010000 00000101 add, then shift
0000101010101010 0000110100100000 00000010 shift only
0000101010101010 0001101001000000 00000001 add, then shift
0010010011101010 0011010010000000 00000000 shift only

105×90= 9450

Multiplication on ARM

On the ARM processor, the algorithm to multiply
two 32-bit unsigned integers is very efficient:

1 mov r0, #0 @ r0 = low-order word of result
2 mov r1, #0 @ r1 = high-order word of result
3 ldr r2, =x @ load pointer to multiplicand
4 ldr r2, [r2] @ r2<-low-order word of multiplicand
5 mov r3, #0 @ r3<-high-order word of multiplicand
6 ldr ip, =y @ load pointer to multiplier
7 ldr ip, [ip] @ ip<-multiplier
8 loop: tst ip, #1 @ is y odd?
9 addnes r0,r0,r2 @ add and set flags if y is odd

10 tst ip, #1 @ previous add may have changed flags
11 adcne r1,r1,r3 @ add and use carry flag if y is odd
12 lsls r2,r2,#1 @ shift lsw of x left into carry bit
13 lsl r3,r3,#1 @ make room for the carry bit is msw
14 adc r3,r3,#0 @ add carry bit to msw of x
15 lsrs ip,ip,#1 @ shift y right
16 bne loop @ if y==0, we are done

Short Multiplication on ARM

If we only want a 32-bit result, we can make it even more efficient:

1 mov r0, #0 @ r0 is result
2 ldr ip, =y @ ip is multiplier
3 ldr ip,[ip]
4 ldr r2, =x @ r2 is multiplicand
5 ldr r2,[r2]
6 lsrs ip,ip,#1 @ shift y right carry<-lsb
7 loop:
8 addcs r0,r0,r2 @ add if carry is set
9 lsl r2,r2,#1 @ shift multiplicand left

10 lsrs ip,ip,#1 @ shift y right carry<-lsb
11 bne loop @ if y==0, we are done

If x or y is a constant, then we don’t need the loop!

Multiplication by a Constant

Suppose we want to multiply a number x by 1010.
1010 = 10102, so we will add x shifted left 1 bit plus x shifted left 3 bits

1 ldr r0, =x
2 ldr r0,[r0] @ load x
3 lsl r0,r0,#1 @ shift x left one bit
4 add r0,r0,r0,lsl #2 @ shift two more bits and add

Now suppose we want to multiply a number x by 1110.
1110 = 10112, so we will add x plus x shifted left 1 bit plus x shifted left 3 bits

1 ldr r1, =x
2 ldr r1,[r1] @ load x
3 add r0,r1,r1,lsl #1 @ shift one bit and add
4 add r0,r0,r1,lsl #3 @ shift three bits and add

Multiplication by a Constant (continued)

Now suppose we want to multiply a number x by 100010.
100010 = 11111010002

It looks like we need 1 shift plus 5 add/shift operations,
or 6 add/shift operations. . . but we can do better.

1 ldr r1, =x
2 ldr r1,[r1] @ load x
3 add r0,r1,r1,lsl #1 @ shift and add: r0<-x*3
4 add r0,r0,r0,lsl #2 @ r0<-x*3 + x*3*4 (x*15)
5 add r0,r1,r0,lsl #1 @ r0<-x + x*15*2 (x*31)
6 lsl r0,#5 @ r0<-x*31*32 (x*992)
7 add r0,r0,r1,lsl #3 @ r0<-x*992 + x*8

If we inspect the constant multiplier, we can usually find a pattern
to exploit that will save a few instructions.

Multiplication by a Constant (continued)

Now suppose we want to multiply a number x by 25510.
25510 = 111111112

It looks like we need 7 add/shift operations. . . but we can do it with 3.

1 ldr r1, =x
2 ldr r1,[r1] @ load x
3 add r0,r1,r1,lsl #1 @ shift and add: r0<-x*3
4 add r0,r0,r0,lsl #2 @ r0<-x*3 + x*3*4 (x*15)
5 add r0,r0,r0,lsl #4 @ r0<-x*15 + x*15*16 (x*255)

This may be faster than a hardware multiply.

But why not multiply x by 256 then subtract x?

1 @ x is currently stored in r1
2 rsb r0,r1,r1,lsl #8 @ r1 <- x*256-x

This is faster than a hardware multiply.

Multiplication of Large Numbers

a1 a0

b1 b0

a0 ×b0

a0 ×b1

a1 ×b0

a1 ×b1

Product of a×b

+

×

Long Division

Binary division is a sequence of shift and subtract operations.

949
13

)
12345
11700

645
520
125
117

8

1110110101
1101

)
11000000111001

1101000000000
1011000111001

110100000000
100100111001

11010000000
1010111001

110100000
100011001

11010000
1001001

110100
10101
1101
1000

Algorithm for Division: Step 1

Shift divisor Left until it is greater than dividend and count the number of shifts.

94÷7=

1101
111

)
1011110
111000
100110

11100
1010

111
11

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 0 0 0 0 1 1 1

Counter: 0 0 0 0 0 0 0 0

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 0 0 0 1 1 1 0

Counter: 0 0 0 0 0 0 0 1

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 0 0 1 1 1 0 0

Counter: 0 0 0 0 0 0 1 0

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 0 1 1 1 0 0 0

Counter: 0 0 0 0 0 0 1 1

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 1 1 1 0 0 0 0

Counter: 0 0 0 0 0 1 0 0

Algorithm for Division: Step 2
Subtract if possible, then shift to the right. Repeat while Counter >= 0.

Quotient: 0 0 0 0 0 0 0 0
Dividend: 0 1 0 1 1 1 1 0

Divisor: 0 1 1 1 0 0 0 0
Counter: 0 0 0 0 0 1 0 0


Divisor > Dividend: No subtract, shift 0 into
Quotient, decrement Counter, shift Dividend
right

Quotient: 0 0 0 0 0 0 0 0
Dividend: 0 1 0 1 1 1 1 0

Divisor: 0 0 1 1 1 0 0 0
Counter: 0 0 0 0 0 0 1 1


Divisor <= Dividend: Subtract, shift 1 into
Quotient, decrement Counter, shift Dividend
right

Quotient: 0 0 0 0 0 0 0 1
Dividend: 0 0 1 0 0 1 1 0

Divisor: 0 0 0 1 1 1 0 0
Counter: 0 0 0 0 0 0 1 0


Divisor <= Dividend: Subtract, shift 1 into
Quotient, decrement Counter, shift Dividend
right

Quotient: 0 0 0 0 0 0 1 1
Dividend: 0 0 0 0 1 0 1 0

Divisor: 0 0 0 0 1 1 1 0
Counter: 0 0 0 0 0 0 0 1


Divisor > Dividend: No subtract, shift 0 into
Quotient, decrement Counter, shift Dividend
right

Quotient: 0 0 0 0 0 1 1 0
Dividend: 0 0 0 0 1 0 1 0

Divisor: 0 0 0 0 0 1 1 1
Counter: 0 0 0 0 0 0 0 0


Divisor <= Dividend: Subtract, shift 1 into
Quotient, decrement Counter, shift Dividend
right

Quotient: 0 0 0 0 1 1 0 1
Dividend: 0 0 0 0 0 0 1 1

Divisor: 0 0 0 0 0 0 1 1
Counter: 1 1 1 1 1 1 1 1

 Counter < 0: We are finished. Bonus! The mod-
ulus (remainder) is in the Dividend register!

Flowchart for Division

Count
< 0?

Divisor
<= Divi-

dend?

Shift
1 into

Quotient

Subtract
divisor
from

Dividend

Shift
0 into

Quotient

Decrement
Count

and shift
Divisor
right

Return Result

Shift
Divisor

left until
it is ≥

Dividend
and

count the
number
of shifts.

no

yes

no
yes

Modified Algorithm for Division: Step 1

Instead of counting the shifts, shift a bit left in another register.

94÷7=

1101
111

)
1011110
111000
100110

11100
1010

111
11

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 0 0 0 0 1 1 1
Power: 0 0 0 0 0 0 0 1

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 0 0 0 1 1 1 0
Power: 0 0 0 0 0 0 1 0

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 0 0 1 1 1 0 0
Power: 0 0 0 0 0 1 0 0

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 0 1 1 1 0 0 0
Power: 0 0 0 0 1 0 0 0

Dividend: 0 1 0 1 1 1 1 0
Divisor: 0 1 1 1 0 0 0 0
Power: 0 0 0 1 0 0 0 0

Modified Algorithm for Division: Step 2
Subtract if possible, then shift to the right. Repeat while Power > 0.

Quotient: 0 0 0 0 0 0 0 0
Dividend: 0 1 0 1 1 1 1 0

Divisor: 0 1 1 1 0 0 0 0
Power: 0 0 0 1 0 0 0 0


Divisor > Dividend:
shift Power right, shift Dividend right

Quotient: 0 0 0 0 0 0 0 0
Dividend: 0 1 0 1 1 1 1 0

Divisor: 0 0 1 1 1 0 0 0
Power: 0 0 0 0 1 0 0 0


Divisor ≤ Dividend:
Dividend -= Divisor,
Quotient += Power, shift Power right, shift Div-
idend right

Quotient: 0 0 0 0 1 0 0 0
Dividend: 0 0 1 0 0 1 1 0

Divisor: 0 0 0 1 1 1 0 0
Power: 0 0 0 0 0 1 0 0


Divisor ≤ Dividend:
Dividend -= Divisor,
Quotient += Power, shift Power right, shift Div-
idend right

Quotient: 0 0 0 0 1 1 0 0
Dividend: 0 0 0 0 1 0 1 0

Divisor: 0 0 0 0 1 1 1 0
Power: 0 0 0 0 0 0 1 0


Divisor > Dividend:
shift Power right, shift Dividend right

Quotient: 0 0 0 0 1 1 0 0
Dividend: 0 0 0 0 1 0 1 0

Divisor: 0 0 0 0 0 1 1 1
Power: 0 0 0 0 0 0 0 1


Divisor ≤ Dividend:
Dividend -= Divisor,
Quotient += Power, shift Power right, shift Div-
idend right

Quotient: 0 0 0 0 1 1 0 1
Dividend: 0 0 0 0 0 0 1 1

Divisor: 0 0 0 0 0 0 1 1
Power: 0 0 0 0 0 0 0 0

 Power = 0: We are finished. Bonus! The modu-
lus (remainder) is in the Dividend register!

Division on ARM

1 udiv32: cmp r1,#0 @ if divisor == zero
2 beq qudiv32 @ exit immediately
3 mov r2,r1 @ move divisor to r2
4 mov r1,r0 @ move dividend to r1
5 mov r0,#0 @ clear r0 to accumulate result
6 mov r3,#1 @ set "current" bit in r3
7 divstrt:cmp r2,#0 @ WHILE ((msb of r2 != 1)
8 blt divloop
9 cmp r2,r1 @ && (r2 < r1))

10 lslls r2,r2,#1 @ shift dividend left
11 lslls r3,r3,#1 @ shift "current" bit left
12 bls divstrt @ end WHILE
13 divloop:cmp r1,r2 @ if dividend >= divisor
14 subhs r1,r1,r2 @ subtract divisor from dividend
15 addhs r0,r0,r3 @ set "current" bit in the result
16 lsr r2,r2,#1 @ shift dividend right
17 lsrs r3,r3,#1 @ Shift current bit right into carry
18 bcc divloop @ If carry not clear, we are done
19 qudiv32:mov pc,lr

Division by a Constant

In general, division is slow, but division by a constant c can be simplified to a multiply
by the reciprocal of c.

x÷c= x× 1
c

But we have to do it in binary using only integers.

x÷c= x× 2n

c
×2−n

Multiplying by 2n is the same as shifting left by n bits. Multiplying by 2−n is done by
shifting right by n bits. Let

m= 2n

c
.

We want to choose n such that m is as large as possible with the number of bits we are
given.

Division by a Constant - Example

Suppose we want efficient code to calculate x÷23 using 8-bit signed integer
multiplication.

Find m= 2n

c , such that 011111112 ≥m≥ 010000002.

If we choose n=11, then

m= 211

23
→

In 8 bits, m is 010110012 or 5916.

After calculating y = x×m, it will be nec-
essary to shift y right by 11 bits.

1011001
10111

)
100000000000

10111000000
1001000000

101110000
11010000
10111000

11000
10111

1

Division by a Constant - Example (continued)

The result for some values of x may be incorrect due to rounding error.
If the divisor is positive, increment the reciprocal value by one in order to alleviate
these errors.
To calculate 10110 ÷2310:

0 1 1 0 0 1 0 1
× 0 1 0 1 1 0 1 0

0 1 1 0 0 1 0 1
0 1 1 0 0 1 0 1

0 1 1 0 0 1 0 1
0 1 1 0 0 1 0 1
1 0 0 0 1 1 1 0 0 0 0 0 1 0

100011100000102 shifted right 1110 bits is : 1002 = 410.

If the modulus is required, it can be calculated as: 101− (4×23)= 9

Division by a Constant on ARM

On the Arm, we can divide by 23 very quickly:

1 @ The following code will calculate r2/23
2 @ It will leave the quotient in r0 and the remainder in r1
3 @ It will also use register r3 as a temporary variable
4 ldr r3,=0x590B2165 @ load 1/23 shifted left by 35 bits
5 smull r0,r1,r3,r2 @ multiply (3 to 7 clock cycles)
6 mov r3,r2,asr #31 @ get sign of numerator (0 or -1)
7 rsb r0,r3,r1,asr#3 @ shift right and adjust for sign
8 @ now get the modulus, if needed
9 mov r1,#23 @ move denominator to r1

10 mul r1,r1,r0 @ multiply denominator by quotient
11 sub r1,r2,r1 @ subtract that from numerator

Formula for Finding Reciprocal

The value of m can be directly computed by using the equation

m= 2p+blog2 cc−1

c
+1, (1)

where p is the desired number of bits of precision. For example, to divide by the
constant 33, with 16 bits of precision, we compute m as

m= 216+5−1

33
+1= 220

33
+1= 31776.030303≈ 31776= 7C2016.

Therefore, multiplying a 16 bit number by 7C2016 and then shifting right 20 bits is
equivalent to dividing by 33.

Uses for These Techniques

98% of computing devices are embedded.

In 2012, the global market for embedded systems was about $1.47 trillion.

The annual growth rate is about 14%

Forecasts predict over 40 billion devices will be sold in 2020.

Most embedded systems are cost sensitive and use very small processors.

Some very common embedded processors are the:

PicMicro PIC family

Atmel AVR family,

Intel 8051 family, and the

Motorola 68HC11 family.

The 68HC11, 8051, AVR200+, and PIC18+ all have an 8-bit by 8-bit hardware
multiply that produces a 16-bit result.

Smaller, cheaper versions of AVR and PIC have no hardware multiply at all.

Summary

Understanding the basic mathematical operations can enable the assembly
programmer to

work with integers of any arbitrary size

achieve efficiency that cannot be matched by any other language.

However!

It is best to focus the assembly programming on areas where the greatest gains
can be made.

	Introduction
	Complement Math
	Signed and Unsigned Binary Integers
	Binary Multiplication
	Binary Division

