Modern Assembly Language Programming with the ARM processor Chapter 7: Integer Mathematics

2 Complement Math

3 Signed and Unsigned Binary Integers

Binary Multiplication

5 Binary Division

Binary Addition

Binary addition works exactly the same as Decimal addition Except that the result of each column is limited to 0 or 1

1			11
75	_		01001011
+ 19	_	+	00010011
94			01011110

Subtracting by Adding – Base 10

This is called 10's complement arithmetic.

Complement

Table

0	9
1	8
2	7
3	6
4	5
5	4
6	3
7	2
8	1
9	0

384 - 56		$\begin{array}{c} 384\\ 943 \end{array}$
$\frac{-56}{328}$	=	$\frac{+ 1}{1 328}$

The 9's complement of 56 (in three digits) is 943. The 10's complement of 56 in three digits is 944. Adding the 10's complement of x is the same as subtracting x. Subtracting by Adding – Binary

Complement Table	$\begin{array}{r} 01011100\\ - 00110001 \end{array} =$	01011100 11001110 + 00000001
1 0	00101011	+ 00000001 100101011

This is called 2's complement arithmetic.*

The 1's complement of 110001(in eight bits) is 11001110. The 2's complement of 110001(in eight bits) is 11001111. Adding the 2's complement of x is the same as subtracting x.

Therefore, the 2's complement of x is the same as -x, and that is one way to store negative numbers in the computer.

 $^{*}92_{10} = 1011100_2, 49_{10} = 110001_2, 43_{10} = 101011_2,$

Signed and Unsigned Integers

- Numbers can be interpreted by the programmer as signed or unsigned.
- The computer treats them both the same.
- Given an 8-bit integer, the programmer can consider it to hold:
 - an unsigned value between 0 and 255, or
 - a signed (two's complement) number between -128 and +127.

Binary	Unsigned	Signed
00000000	0	0
00000001	1	1
:	:	÷
01111110	126	126
01111111	127	127
10000000	128	-128
10000001	129	-127
:	:	÷
11111110	254	-2
11111111	255	-1

Base Conversion of Negative Numbers

Converting a signed 2's complement number from binary to decimal.

If the most significant bit is '1', then

- Find the 2's complement
- Onvert the result to base 10
- 6 Add a negative sign
- else

Convert the result to base 10

Number	1's Complement	2's Complement	Base 10	Negative
11010010	00101101	00101110	46	-46
1111111100010110	0000000011101001	0000000011101010	234	-234
01110100	Not negative		116	
1000001101010110	0111110010101001	0111110010101010	31914	-31914
0101001111011011	Not negative		21467	

Base Conversion of Negative Numbers

Converting a negative number from decimal to binary.

- Remove the negative sign
- Onvert the number to binary
- Take the 2's complement

Base 10	Positive Binary	1's Complement	2's Complement
-46	00101110	11010001	11010010
-234	0000000011101010	1111111100010101	1111111100010110
-116	01110100	10001011	10001100
-31914	0111110010101010	1000001101010110	1000001101010111
-21467	0101001111011011	1010110000100100	1010110000100101

Addition, Subtraction, and Negation – Examples

+	23 15 38	=	+	00010111 00001111 00100110	_	23 15 8	=	+ 1	00010111 11110001 00001000	_ _)
-	23			11101001	-	23			11101001	L
+	15	=	+	00001111	-	15	=	+	11110001	

38

_

111011010

- 2	23			11101001	
+ 1	15	=	+	00001111	
-	8			11111000	

Long Multiplication

The result of multiplying an n bit number by an m bit number is an n + m bit number

		01100101
101		× 01011001
× 89		01100101
909	=	01100101
808		01100101
8989		01100101
		0010001100011101

Long Multiplication - Signed vs Unsigned

The result depends on whether you are doing signed or unsigned multiply!

|--|

73	11011001
× 217	× 01001001
511 _	0000000011011001
73 -	0000011011001
146	0011011001
15841	0011110111100001

The 2's complement of 0011110111100001 is 1100001000011110 + 1 = 1100001000011111You can not always use an unsigned multiply and negate the result! Algorithm for Unsigned Multiplication – Part 1

To multiply two *n* bit numbers, you must be able to add two 2*n* bit numbers.

Assume we have x in r1:r0 and y in r3:r2 (The high order words are in the high-order registers)

and we want to calculate x = x + y

ARM Assembly:

1	adds	r0,r0,r2	@ add the low-order words, and	
2			0 set flags in CPSR	
3	adc	r1,r1,r3	0 add the high-order words plus	
4			0 the carry flag	

Early ARM processors did not have a multiply instruction.

We will show how to multiply two 8-bit numbers to get a 16-bit result.

The same algorithm works for numbers of any size.

Algorithm for Unsigned Multiplication – Part 2

Given two 8-bit numbers, x and y, where x is the multiplicand and y is the multiplier:

- 1: Extend the multiplicand *x* to 16 bits.
- 2: Set a 16-bit register, *a*, to zero,
- 3: while $y \neq 0$ do
- 4: **if** y is an odd number **then**
- 5: $a \leftarrow a + x$
- 6: end if
- 7: *Logical* shift *y* right one bit
- 8: Shift *x* left one bit
- 9: end while

Algorithm for Unsigned Multiplication – Example

Binary multiplication is a sequence of shift and add operations.

x = 01101001 and y = 01011010

a	x	у	Next operation
000000000000000000000000000000000000000	0000000001101001	01011010	shift only
00000000000000000	0000000011010010	00101101	add, then shift
0000000011010010	0000000110100100	00010110	shift only
0000000011010010	0000001101001000	00001011	add, then shift
0000010000011010	0000011010010000	00000101	add, then shift
0000101010101010	0000110100100000	0000010	shift only
0000101010101010	0001101001000000	00000001	add, then shift
0010010011101010	0011010010000000	00000000	shift only

 $105 \times 90 = 9450$

Multiplication on ARM

On the ARM processor, the algorithm to multiply two 32-bit unsigned integers is very efficient:

	mov	r0,	#0	0	r0 = low-order word of result
	mov	r1,	#0	0	r1 = high-order word of result
	ldr	r2,	=X	0	load pointer to multiplicand
	ldr	r2,	[r2]	0	r2<-low-order word of multiplicand
	mov	r3,	#0	0	r3<-high-order word of multiplicand
	ldr	ip,	=y	0	load pointer to multiplier
	ldr	ip,	[ip]	0	ip<-multiplier
loop:	tst	ip,	#1	0	is y odd?
	addnes	r0,1	c0,r2	0	add and set flags if y is odd
	tst	ip,	#1	0	previous add may have changed flags
	adcne	r1,1	c1,r3	0	add and use carry flag if y is odd
	lsls	r2,1	<mark>2,</mark> #1	0	shift lsw of x left into carry bit
	lsl	r3,1	<mark>3,</mark> #1	0	make room for the carry bit is msw
	adc	r3,1	<mark>3,</mark> #0	0	add carry bit to msw of x
	lsrs	ip,	ip, #1	0	shift y right
	bne	loop	C	0	if y==0, we are done
	loop:	mov mov ldr ldr ldr ldr ldr ldr ldr stst addnes tst adcne lsls lsl adc lsrs bne	mov r0, mov r1, ldr r2, ldr r2, mov r3, ldr ip, ldr ip, ldr ip, ldr ip, ldr ip, ldr ip, addnes r0,	<pre>mov r0, #0 mov r1, #0 ldr r2, =x ldr r2, [r2] mov r3, #0 ldr ip, =y ldr ip, [ip] loop: tst ip, #1 addnes r0,r0,r2 tst ip, #1 adcne r1,r1,r3 ls1s r2,r2,#1 ls1 r3,r3,#1 adc r3,r3,#0 lsrs ip,ip,#1 bne loop</pre>	<pre>mov r0, #0 @ mov r1, #0 @ ldr r2, =x @ ldr r2, [r2] @ mov r3, #0 @ ldr ip, =y @ ldr ip, [ip] @ loop: tst ip, #1 @ addnes r0,r0,r2 @ tst ip, #1 @ adcne r1,r1,r3 @ ls1s r2,r2,#1 @ ls1 r3,r3,#1 @ adc r3,r3,#0 @ lsrs ip,ip,#1 @</pre>

Short Multiplication on ARM

		If we on	nly want a 3	32-	bit result, we can make it even more efficient:
1		mov	<mark>r0,</mark> #0	0	r0 is result
2		ldr	ip, =y	0	ip is multiplier
3		ldr	ip,[ip]		
4		ldr	r2, =x	0	r2 is multiplicand
5		ldr	r2,[r2]		
6		lsrs	ip,ip,#1	0	shift y right carry<-lsb
7	loop:				
8		addcs	r0,r0,r2	0	add if carry is set
9		lsl	r2,r2,#1	0	shift multiplicand left
10		lsrs	ip,ip,#1	0	shift y right carry<-lsb
11		bne	loop	0	if $y==0$, we are done

If *x* or *y* is a constant, then we don't need the loop!

Multiplication by a Constant

Suppose we want to multiply a number x by 10_{10} . $10_{10} = 1010_2$, so we will add x shifted left 1 bit plus x shifted left 3 bits

1	ldr	r0, =x		
2	ldr	r0,[r0]	9	load x
3	lsl	r0,r0,#1	9	shift x left one bit
4	add	r0,r0,r0,lsl #2	9	shift two more bits and add

Now suppose we want to multiply a number x by 11_{10} . $11_{10} = 1011_2$, so we will add x plus x shifted left 1 bit plus x shifted left 3 bits

1	ldr	r1, =x		
2	ldr	r1, [r1]	0	load x
3	add	r0,r1,r1,ls1 #1	0	shift one bit and add
4	add	r0,r0,r1,ls1 #3	0	shift three bits and add

Multiplication by a Constant (continued)

Now suppose we want to multiply a number x by 1000_{10} . $1000_{10} = 1111101000_2$ It looks like we need 1 shift plus 5 add/shift operations, or 6 add/shift operations...but we can do better.

L	ldr	r1, =x	
2	ldr	r1, [r1]	0 load x
3	add	r0,r1,r1,lsl #1	@ shift and add: r0<-x*3
L	add	r0,r0,r0,lsl #2	2 @ r0<-x*3 + x*3*4 (x*15)
5	add	r0,r1,r0,lsl #1	@ r0<-x + x*15*2 (x*31)
5	lsl	r0, #5	@ r0<-x*31*32 (x*992)
7	add	r0,r0,r1,ls1 #3	3 @ r0<-x*992 + x*8

If we inspect the constant multiplier, we can usually find a pattern to exploit that will save a few instructions.

Multiplication by a Constant (continued)

Now suppose we want to multiply a number x by 255_{10} . $255_{10} = 11111111_2$

It looks like we need 7 add/shift operations... but we can do it with 3.

1	ldr	r1, =x		
2	ldr	r1, [r1]	0	load x
3	add	r0,r1,r1,lsl #1	0	shift and add: r0<-x*3
4	add	r0,r0,r0,lsl #2	0	r0<-x*3 + x*3*4 (x*15)
5	add	r0,r0,r0,lsl #4	0	r0<-x*15 + x*15*16 (x*255)

This may be faster than a hardware multiply.

But why not multiply *x* by 256 then subtract *x*?

@ x	is currently	stored	in r1	
rsb	r0,r1,r1,	,lsl #8	0 r1 <-	x*256-x

This is faster than a hardware multiply.

Multiplication of Large Numbers

Long Division

Binary division is a sequence of shift and subtract operations.

1110110101
1110110101
1101)11000000111001
1101000000000
1011000111001
110100000000
100100111001
11010000000
1010111001
110100000
100011001
11010000
1001001
110100
10101
1101
1000

	949
13)	12345
	11700
	645
	520
	125
	117
	8

Algorithm for Division: Step 1

Shift divisor Left until it is greater than dividend and count the number of shifts.

94 ÷ 7 =
1101
111) 1011110
111000
100110
11100
1010
111
11

Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	0	0	1	1	1
Counter:	0	0	0	0	0	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	0	1	1	1	0
Counter:	0	0	0	0	0	0	0	1
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	1	1	1	0	0
Counter:	0	0	0	0	0	0	1	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	1	1	1	0	0	0
Counter:	0	0	0	0	0	0	1	1
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	1	1	1	0	0	0	0
Counter:	0	0	0	0	0	1	0	0

Algorithm for Division: Step 2

Subtract if possible, then shift to the right. Repeat while Counter >= 0.

Quotient:	0	0	0	0	0	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	1	1	1	0	0	0	0
Counter:	0	0	0	0	0	1	0	0
Quotient:	0	0	0	0	0	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	1	1	1	0	0	0
Counter:	0	0	0	0	0	0	1	1
Quotient:	0	0	0	0	0	0	0	1
Dividend:	0	0	1	0	0	1	1	0
Divisor:	0	0	0	1	1	1	0	0
Counter:	0	0	0	0	0	0	1	0
Quotient:	0	0	0	0	0	0	1	1
Dividend:	0	0	0	0	1	0	1	0
Divisor:	0	0	0	0	1	1	1	0
Counter:	0	0	0	0	0	0	0	1
Quotient:	0	0	0	0	0	1	1	0
Dividend:	0	0	0	0	1	0	1	0
Divisor:	0	0	0	0	0	1	1	1
Counter:	0	0	0	0	0	0	0	0
Quotient:	0	0	0	0	1	1	0	1
Dividend:	0	0	0	0	0	0	1	1
Divisor:	0	0	0	0	0	0	1	1
Counter:	1	1	1	1	1	1	1	1

Divisor > Dividend: No subtract, shift 0 into Quotient, decrement Counter, shift Dividend right

Divisor <= Dividend: Subtract, shift 1 into Quotient, decrement Counter, shift Dividend right

Divisor <= Dividend: Subtract, shift 1 into Quotient, decrement Counter, shift Dividend right

Divisor > Dividend: No subtract, shift 0 into Quotient, decrement Counter, shift Dividend right

Divisor <= Dividend: Subtract, shift 1 into Quotient, decrement Counter, shift Dividend right

Counter < 0: We are finished. Bonus! The modulus (remainder) is in the Dividend register!

Flowchart for Division

Modified Algorithm for Division: Step 1

Instead of counting the shifts, shift a bit left in another register.

94 ÷ 7 =
1101
111) 1011110
111000
100110
11100
1010
111
11

Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	0	0	1	1	1
Power:	0	0	0	0	0	0	0	1
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	0	1	1	1	0
Power:	0	0	0	0	0	0	1	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	1	1	1	0	0
Power:	0	0	0	0	0	1	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	1	1	1	0	0	0
Power:	0	0	0	0	1	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	1	1	1	0	0	0	0
Power:	0	0	0	1	0	0	0	0

Modified Algorithm for Division: Step 2

Subtract if possible, then shift to the right. Repeat while Power > 0.

Divisor > Dividend: shift Power right, shift Dividend right

Divisor ≤ Dividend: Dividend -= Divisor, Quotient += Power, shift Power right, shift Dividend right

Divisor ≤ Dividend: Dividend -= Divisor, Quotient += Power, shift Power right, shift Dividend right

Divisor > Dividend: shift Power right, shift Dividend right

Divisor ≤ Dividend: Dividend -= Divisor, Quotient += Power, shift Power right, shift Dividend right

Power = 0: We are finished. Bonus! The modulus (remainder) is in the Dividend register!

Division on ARM

1	udiv32:	cmp	r1, #0	0	if divisor == zero
2		beq	qudiv32	9	exit immediately
3		mov	r2,r1	9	move divisor to r2
4		mov	r1,r0	9	move dividend to r1
5		mov	<mark>r0,</mark> #0	9	clear r0 to accumulate result
6		mov	<mark>r3,</mark> #1	9	set "current" bit in r3
7	divstrt	:cmp	<mark>r2,</mark> #0	9	WHILE ((msb of r2 $!= 1$)
8		blt	divloop		
9		cmp	r2,r1	9	&& (r2 < r1))
10		lslls	r2,r2,#1	9	shift dividend left
11		lslls	r3,r3,#1	9	shift "current" bit left
12		bls	divstrt	9	end WHILE
13	divloop	:cmp	r1,r2	9	if dividend >= divisor
14		subhs	r1,r1,r2	9	subtract divisor from dividend
15		addhs	r0,r0,r3	9	set "current" bit in the result
16		lsr	r2,r2,#1	9	shift dividend right
17		lsrs	r3,r3,#1	9	Shift current bit right into carry
18		bcc	divloop	0	If carry not clear, we are done
19	qudiv32	:mov	pc,lr		

Division by a Constant

In general, division is slow, but division by a constant c can be simplified to a multiply by the reciprocal of c.

$$x \div c = x \times \frac{1}{c}$$

But we have to do it in binary using only integers.

$$x \div c = x \times \frac{2^n}{c} \times 2^{-n}$$

Multiplying by 2^n is the same as shifting left by *n* bits. Multiplying by 2^{-n} is done by shifting right by *n* bits. Let

$$m=\frac{2^n}{c}.$$

We want to choose n such that m is as large as possible with the number of bits we are given.

Division by a Constant - Example

Suppose we want efficient code to calculate $x \div 23$ using 8-bit signed integer multiplication.

Find $m = \frac{2^n}{c}$, such that $01111111_2 \ge m \ge 0100000_2$.

If we choose n=11, then	1011001
-11	10111) 100000000000
$m = \frac{2^{11}}{2} \rightarrow 1$	10111000000
23	1001000000
In 8 bits, <i>m</i> is 01011001 ₂ or 59 ₁₆ .	101110000
, 2 10	11010000
After calculating $y = x \times m$, it will be nec-	10111000
essary to shift y right by 11 bits.	11000
	10111
	1

Division by a Constant - Example (continued)

The result for some values of x may be incorrect due to rounding error. If the divisor is positive, increment the reciprocal value by one in order to alleviate these errors.

To calculate $101_{10} \div 23_{10}$:

 $\begin{array}{r}
01100101 \\
\times 01011010 \\
\hline
01100101 \\
01100101 \\
01100101 \\
\hline
01100101 \\
10001110000010
\end{array}$

 10001110000010_2 shifted right 11_{10} bits is : $100_2 = 4_{10}$.

If the modulus is required, it can be calculated as: $101 - (4 \times 23) = 9$

Division by a Constant on ARM

On the Arm, we can divide by 23 very quickly:

1	@ The following code will calculate r2/23
2	@ It will leave the quotient in r0 and the remainder in r1
3	@ It will also use register r3 as a temporary variable
4	<pre>ldr r3,=0x590B2165 @ load 1/23 shifted left by 35 bits</pre>
5	<pre>smull r0,r1,r3,r2 @ multiply (3 to 7 clock cycles)</pre>
6	<pre>mov r3,r2,asr #31 @ get sign of numerator (0 or -1)</pre>
7	<pre>rsb r0,r3,r1,asr#3 @ shift right and adjust for sign</pre>
8	0 now get the modulus, if needed
9	mov r1,#23 @ move denominator to r1
0	<pre>mul r1,r1,r0 @ multiply denominator by quotient</pre>
1	<pre>sub r1,r2,r1 @ subtract that from numerator</pre>
_	

Formula for Finding Reciprocal

The value of *m* can be directly computed by using the equation

$$m = \frac{2^{p + \lfloor \log_2 c \rfloor - 1}}{c} + 1,$$
 (1)

where p is the desired number of bits of precision. For example, to divide by the constant 33, with 16 bits of precision, we compute m as

$$m = \frac{2^{16+5-1}}{33} + 1 = \frac{2^{20}}{33} + 1 = 31776.030303 \approx 31776 = 7C20_{16}.$$

Therefore, multiplying a 16 bit number by $7C20_{16}$ and then shifting right 20 bits is equivalent to dividing by 33.

Uses for These Techniques

98% of computing devices are embedded.

- In 2012, the global market for embedded systems was about \$1.47 trillion.
- The annual growth rate is about 14%
- Forecasts predict over 40 billion devices will be sold in 2020.

Most embedded systems are cost sensitive and use very small processors.

Some very common embedded processors are the:

- PicMicro PIC family
- Atmel AVR family,
- Intel 8051 family, and the
- Motorola 68HC11 family.

The 68HC11, 8051, AVR200+, and PIC18+ all have an 8-bit by 8-bit hardware multiply that produces a 16-bit result.

Smaller, cheaper versions of AVR and PIC have no hardware multiply at all.

Summary

- Understanding the basic mathematical operations can enable the assembly programmer to
 - work with integers of any arbitrary size
 - achieve efficiency that cannot be matched by any other language.

However!

• It is best to focus the assembly programming on areas where the greatest gains can be made.