Modern Assembly Language Programming with the
 ARM processor

Chapter 7: Integer Mathematics
(1) Introduction
(2) Complement Math

3 Signed and Unsigned Binary Integers

4 Binary Multiplication
(5) Binary Division

Binary Addition

Binary addition works exactly the same as Decimal addition Except that the result of each column is limited to 0 or 1

| 1 |
| :---: | :---: |
| 75 |
| +19 |
| 94 |\quad| 11 |
| :---: |
| 01001011 |
| 00010011 |
| 01011110 |

Subtracting by Adding - Base 10

This is called 10's complement arithmetic.
Complement

Table	
0	9
1	8
2	7
3	6
4	5
5	4
6	3
7	2
8	1
9	0

384
$-\quad 56$
328
---:
943
$+\quad 1$
1328

The 9's complement of 56 (in three digits) is 943 .
The 10's complement of 56 in three digits is 944 .
Adding the 10 's complement of x is the same as subtracting x.

Subtracting by Adding - Binary

This is called 2's complement arithmetic.*

Complement
Table

0	1
1	0

$$
\begin{array}{r}
01011100 \\
-\quad 00110001 \\
\hline 00101011
\end{array}=\begin{array}{r}
01011100 \\
11001110 \\
+\quad 00000001 \\
\hline 100101011
\end{array}
$$

The 1's complement of 110001(in eight bits) is 11001110.
The 2's complement of 110001(in eight bits) is 11001111.
Adding the 2's complement of x is the same as subtracting x.

Therefore, the 2's complement of x is the same as $-x$, and that is one way to store negative numbers in the computer.

$$
{ }^{*} 92_{10}=1011100_{2}, 49_{10}=110001_{2}, 43_{10}=101011_{2},
$$

Signed and Unsigned Integers

- Numbers can be interpreted by the programmer as signed or unsigned.
- The computer treats them both the same.
- Given an 8-bit integer, the programmer can consider it to hold:
- an unsigned value between 0 and 255 , or
- a signed (two's complement) number between -128 and +127 .

Binary	Unsigned	Signed
00000000	0	0
00000001	1	1
\vdots	\vdots	\vdots
01111110	126	126
01111111	127	127
10000000	128	-128
10000001	129	-127
\vdots	\vdots	\vdots
11111110	254	-2
11111111	255	-1

Base Conversion of Negative Numbers

Converting a signed 2's complement number from binary to decimal.
(1) If the most significant bit is ' 1 ', then
(1) Find the 2 's complement
(3) Convert the result to base 10
(3) Add a negative sign
(2) else
(1) Convert the result to base 10

Number	1's Complement	2's Complement	Base 10	Negative
11010010	00101101	00101110	46	-46
1111111100010110	0000000011101001	0000000011101010	234	-234
01110100	Not negative		116	
1000001101010110	0111110010101001	0111110010101010	31914	-31914
0101001111011011	Not negative		21467	

Base Conversion of Negative Numbers

Converting a negative number from decimal to binary.
(1) Remove the negative sign
(2) Convert the number to binary
(3) Take the 2 's complement

Base 10	Positive Binary	1's Complement	2's Complement
-46	00101110	11010001	11010010
-234	0000000011101010	1111111100010101	1111111100010110
-116	01110100	10001011	10001100
-31914	0111110010101010	1000001101010110	1000001101010111
-21467	0101001111011011	1010110000100100	1010110000100101

Addition, Subtraction, and Negation - Examples

$$
\begin{array}{r}
23 \\
+\quad 15 \\
\hline 38
\end{array}=\begin{array}{r}
00010111 \\
+00001111 \\
\hline 00100110
\end{array}
$$

$$
\begin{array}{r}
23 \\
-\quad 15 \\
\hline 8
\end{array} \begin{array}{r}
00010111 \\
+11110001 \\
\hline 100001000
\end{array}
$$

$$
\begin{array}{r}
-23 \\
+\quad 15 \\
\hline-8
\end{array}=\begin{array}{r}
11101001 \\
+\quad 00001111 \\
\hline 11111000
\end{array}
$$

$$
\begin{array}{r}
-23 \\
-\quad 15 \\
\hline-38
\end{array}=\begin{array}{r}
11101001 \\
+11110001 \\
\hline 111011010
\end{array}
$$

Long Multiplication

The result of multiplying an n bit number by an m bit number is an $n+m$ bit number

	01100101
101	
$\times 89$	
909	
$\frac{808}{8989}$	$\times 01011001$
	01100101
001100101	
01100101	

Long Multiplication - Signed vs Unsigned

The result depends on whether you are doing signed or unsigned multiply!

73
$\times \quad-39$
657
$\frac{219}{-2847}$
---:
1111111111011001
1111111011001
$\frac{1111011001}{1111010011100001}$

73
$\times 217$
511
73
$\frac{146}{15841}$
001011001
000000011011001
0000011011001
0011011001
0011110111100001

The 2's complement of 0011110111100001 is $1100001000011110+1=1100001000011111$
You can not always use an unsigned multiply and negate the result!

Algorithm for Unsigned Multiplication - Part 1

To multiply two n bit numbers, you must be able to add two $2 n$ bit numbers.
Assume we have x in $r 1: r 0$ and y in $r 3: r 2$
(The high order words are in the high-order registers) and we want to calculate $x=x+y$
ARM Assembly:

```
adds r0,r0,r2 @ add the low-order words, and
@ set flags in CPSR
adc r1,r1,r3 @ add the high-order words plus
@ the carry flag
```

Early ARM processors did not have a multiply instruction.
We will show how to multiply two 8 -bit numbers to get a 16 -bit result.
The same algorithm works for numbers of any size.

Algorithm for Unsigned Multiplication - Part 2

Given two 8-bit numbers, x and y, where x is the multiplicand and y is the multiplier:

1: Extend the multiplicand x to 16 bits.
2: Set a 16 -bit register, a, to zero,
3: while $y \neq 0$ do
4: if y is an odd number then
5: $\quad a \leftarrow a+x$
6: end if
7: Logical shift y right one bit
8: \quad Shift x left one bit
9: end while

Algorithm for Unsigned Multiplication - Example

Binary multiplication is a sequence of shift and add operations.

$$
x=01101001 \text { and } y=01011010
$$

a	x	y	Next operation
0000000000000000	0000000001101001	01011010	shift only
0000000000000000	0000000011010010	00101101	add, then shift
0000000011010010	0000000110100100	00010110	shift only
0000000011010010	0000001101001000	00001011	add, then shift
0000010000011010	0000011010010000	00000101	add, then shift
0000101010101010	0000110100100000	00000010	shift only
0000101010101010	0001101001000000	00000001	add, then shift
0010010011101010	0011010010000000	00000000	shift only
$105 \times 90=9450$			

Multiplication on ARM

On the ARM processor, the algorithm to multiply two 32-bit unsigned integers is very efficient:

	mov	r0, \#0	@ r0 = low-order word of result
	mov	r1, \#0	@ r1 = high-order word of result
	ldr	r2, $=x$	@ load pointer to multiplicand
	$l d r$	r2, [r2]	@ r2<-low-order word of multiplicand
	mov	r3, \#0	@ r3<-high-order word of multiplicand
	ldr	ip, =y	@ load pointer to multiplier
	$l d r$	ip, [ip]	@ ip<-multiplier
loop:	tst	ip, \#1	@ is y odd?
	addnes	r0,r0,r2	@ add and set flags if y is odd
	tst	ip, \#1	@ previous add may have changed flags
	adcne	r1,r1,r3	@ add and use carry flag if y is odd
	lsls	r2,r2, \#1	@ shift lsw of x left into carry bit
	lsl	r3, r3, \#1	@ make room for the carry bit is msw
	adc	r3, r3, \#0	@ add carry bit to msw of x
	lsrs	ip,ip, \#1	@ shift y right
	bne	loop	@ if $\mathrm{y}==0$, we are done

Short Multiplication on ARM

If we only want a 32-bit result, we can make it even more efficient:

If x or y is a constant, then we don't need the loop!

Multiplication by a Constant

Suppose we want to multiply a number x by 10_{10}.
$10_{10}=1010_{2}$, so we will add x shifted left 1 bit plus x shifted left 3 bits

```
ldr r0, =x
ldr r0,[r0] @ load x
lsl r0,r0,#1 @ shift x left one bit
add r0,r0,r0,lsl #2 @ shift two more bits and add
```

Now suppose we want to multiply a number x by 11_{10}.
$11_{10}=1011_{2}$, so we will add x plus x shifted left 1 bit plus x shifted left 3 bits

```
ldr r1, =x
ldr r1,[r1] @ load x
add r0,r1,r1,lsl #1 @ shift one bit and add
add r0,r0,r1,lsl #3 @ shift three bits and add
```


Multiplication by a Constant (continued)

Now suppose we want to multiply a number x by 1000_{10}.

$$
1000_{10}=1111101000_{2}
$$

It looks like we need 1 shift plus 5 add/shift operations, or $6 \mathrm{add} /$ shift operations. . . but we can do better.

```
ldr r1, \(=x\)
ldr r1,[r1] @ load x
add \(r 0, r 1, r 1,1 s l\) \#1 @ shift and add: \(r 0<-x * 3\)
add \(r 0, r 0, r 0,1 s l \# 2\) @ \(r 0<-x * 3+x * 3 * 4(x * 15)\)
add \(r 0, r 1, r 0,1 s l \# 1\) @ \(r 0<-x+x * 15 * 2(x * 31)\)
lsl \(r 0, \# 5\) @ \(r 0<-x * 31 * 32\) ( \(x * 992\) )
add \(r 0, r 0, r 1, l s l \# 3 @ r 0<-x * 992+x * 8\)
```

If we inspect the constant multiplier, we can usually find a pattern to exploit that will save a few instructions.

Multiplication by a Constant (continued)

Now suppose we want to multiply a number x by 255_{10}.

$$
255_{10}=11111111_{2}
$$

It looks like we need $7 \mathrm{add} /$ shift operations. . . but we can do it with 3.

```
ldr r1, =x
ldr r1,[r1] @ load x
add r0,r1,r1,lsl #1 @ shift and add: r0<-x*3
add r0,r0,r0,lsl #2 @ r0<-x*3 + x*3*4 (x*15)
add r0,r0,r0,lsl #4 @ r0<-x*15 + x*15*16 (x*255)
```

This may be faster than a hardware multiply.
But why not multiply x by 256 then subtract x ?

```
@ x is currently stored in r1
rsb r0,r1,r1,1sl \#8 @ r1 <- x*256-x
```

This is faster than a hardware multiply.

Multiplication of Large Numbers

Long Division

Binary division is a sequence of shift and subtract operations.

	1110110101
	$1 1 0 1 \longdiv { 1 1 0 0 0 0 0 0 1 1 1 0 0 1 }$
	1101000000000
	1011000111001
949	110100000000
13) 12345	100100111001
11700	11010000000
645	1010111001
520	110100000
125	100011001
117	11010000
8	1001001
	110100
	10101
	1101
	$\overline{1000}$

Algorithm for Division: Step 1

Shift divisor Left until it is greater than dividend and count the number of shifts.

$94 \div 7=$
$1 1 1 \longdiv { 1 0 1 1 1 1 0 }$
$\frac{111000}{100110}$
$\frac{11100}{1010}$
$\frac{111}{11}$

Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	0	0	1	1	1
Counter:	0	0	0	0	0	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	0	1	1	1	0
Counter:	0	0	0	0	0	0	0	1
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	1	1	1	0	0
Counter:	0	0	0	0	0	0	1	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	1	1	1	0	0	0
Counter:	0	0	0	0	0	0	1	1
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	1	1	1	0	0	0	0
Counter:	0	0	0	0	0	1	0	0

Algorithm for Division: Step 2

Subtract if possible, then shift to the right. Repeat while Counter $>=0$.

Quotient:	0	0	0	0	0	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	1	1	1	0	0	0	0
Counter:	0	0	0	0	0	1	0	0

Quotient:	0	0	0	0	0	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	1	1	1	0	0	0
Counter:	0	0	0	0	0	0	1	1

Quotient:	0	0	0	0	0	0	0	1
Dividend:	0	0	1	0	0	1	1	0
Divisor:	0	0	0	1	1	1	0	0
Counter:	0	0	0	0	0	0	1	0

Quotient:	0	0	0	0	0	0	1	1
Dividend:	0	0	0	0	1	0	1	0
Divisor:	0	0	0	0	1	1	1	0
Counter:	0	0	0	0	0	0	0	1

Quotient:	0	0	0	0	0	1	1	0
Dividend:	0	0	0	0	1	0	1	0
Divisor:	0	0	0	0	0	1	1	1
Counter:	0	0	0	0	0	0	0	0

Quotient:	0	0	0	0	1	1	0	1
Dividend:	0	0	0	0	0	0	1	1
Divisor:	0	0	0	0	0	0	1	1
Counter:	1	1	1	1	1	1	1	1

Divisor > Dividend: No subtract, shift 0 into Quotient, decrement Counter, shift Dividend right

Divisor <= Dividend: Subtract, shift 1 into Quotient, decrement Counter, shift Dividend right

Divisor <= Dividend: Subtract, shift 1 into Quotient, decrement Counter, shift Dividend right

Divisor > Dividend: No subtract, shift 0 into Quotient, decrement Counter, shift Dividend right

Divisor <= Dividend: Subtract, shift 1 into Quotient, decrement Counter, shift Dividend right

Counter <0 : We are finished. Bonus! The modulus (remainder) is in the Dividend register!

Flowchart for Division

Modified Algorithm for Division: Step 1

Instead of counting the shifts, shift a bit left in another register.

$94 \div 7=$
$1 1 1 \longdiv { 1 0 1 1 1 1 0 }$
$\frac{111000}{100110}$
$\frac{11100}{1010}$
$\frac{111}{11}$

Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	0	0	1	1	1
Power:	0	0	0	0	0	0	0	1
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	0	1	1	1	0
Power:	0	0	0	0	0	0	1	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	0	1	1	1	0	0
Power:	0	0	0	0	0	1	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	1	1	1	0	0	0
Power:	0	0	0	0	1	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	1	1	1	0	0	0	0
Power:	0	0	0	1	0	0	0	0

Modified Algorithm for Division: Step 2

Subtract if possible, then shift to the right. Repeat while Power >0.

Quotient:	0	0	0	0	0	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	1	1	1	0	0	0	0
Power:	0	0	0	1	0	0	0	0

Quotient:	0	0	0	0	0	0	0	0
Dividend:	0	1	0	1	1	1	1	0
Divisor:	0	0	1	1	1	0	0	0
Power:	0	0	0	0	1	0	0	0

Quotient:	0	0	0	0	1	0	0	0
Dividend:	0	0	1	0	0	1	1	0
Divisor:	0	0	0	1	1	1	0	0
Power:	0	0	0	0	0	1	0	0

Quotient:	0	0	0	0	1	1	0	0
Dividend:	0	0	0	0	1	0	1	0
Divisor:	0	0	0	0	1	1	1	0
Power:	0	0	0	0	0	0	1	0

Quotient:	0	0	0	0	1	1	0	0
Dividend:	0	0	0	0	1	0	1	0
Divisor:	0	0	0	0	0	1	1	1
Power:	0	0	0	0	0	0	0	1

Quotient:	0	0	0	0	1	1	0	1
Dividend:	0	0	0	0	0	0	1	1
Divisor:	0	0	0	0	0	0	1	1
Power:	0	0	0	0	0	0	0	0

Divisor > Dividend:
shift Power right, shift Dividend right

Divisor \leq Dividend:
Dividend -= Divisor,
Quotient += Power, shift Power right, shift Dividend right

Divisor \leq Dividend:
Dividend -= Divisor,
Quotient += Power, shift Power right, shift Dividend right

Divisor > Dividend:
shift Power right, shift Dividend right

Divisor \leq Dividend:
Dividend -= Divisor,
Quotient += Power, shift Power right, shift Dividend right

Power $=0:$ We are finished. Bonus! The modulus (remainder) is in the Dividend register!

Division on ARM

```
udiv32: cmp r1,#0 @ if divisor == zero
    beq qudiv32
    mov r2,r1
@ exit immediately
@ move divisor to r2
    mov r1,r0 @ move dividend to r1
    mov r0,#0
@ clear r0 to accumulate result
@ set "current" bit in r3
@ WHILE ((msb of r2 != 1)
    blt divloop
    cmp r2,r1 @ && (r2<r1))
    lslls r2,r2,#1 @ shift dividend left
    lslls r3,r3,#1 @ shift "current" bit left
    bls divstrt @ end WHILE
divloop:cmp r1,r2 @ if dividend >= divisor
    subhs r1,r1,r2 @ subtract divisor from dividend
    addhs r0,r0,r3 @ set "current" bit in the result
    lsr r2,r2,#1 @ shift dividend right
    lsrs r3,r3,#1 @ Shift current bit right into carry
    bcc divloop @ If carry not clear, we are done
qudiv32:mov pc,lr
```


Division by a Constant

In general, division is slow, but division by a constant c can be simplified to a multiply by the reciprocal of c.

$$
x \div c=x \times \frac{1}{c}
$$

But we have to do it in binary using only integers.

$$
x \div c=x \times \frac{2^{n}}{c} \times 2^{-n}
$$

Multiplying by 2^{n} is the same as shifting left by n bits. Multiplying by 2^{-n} is done by shifting right by n bits. Let

$$
m=\frac{2^{n}}{c}
$$

We want to choose n such that m is as large as possible with the number of bits we are given.

Division by a Constant - Example

Suppose we want efficient code to calculate $x \div 23$ using 8-bit signed integer multiplication.

Find $m=\frac{2^{n}}{c}$, such that $01111111_{2} \geq m \geq 01000000_{2}$.
If we choose $n=11$, then

$$
\begin{array}{r}
1011001 \\
\begin{array}{r}
100000000000 \\
\frac{10111000000}{1001000000}
\end{array}
\end{array}
$$

In 8 bits, m is 01011001_{2} or 59_{16}.
$\frac{101110000}{11010000}$

After calculating $y=x \times m$, it will be nec10111000 essary to shift y right by 11 bits.

Division by a Constant - Example (continued)

The result for some values of x may be incorrect due to rounding error. If the divisor is positive, increment the reciprocal value by one in order to alleviate these errors.
To calculate $101_{10} \div 23_{10}$:

$$
\begin{array}{r}
01100101 \\
\times \quad 01011010 \\
\hline 01100101 \\
01100101 \\
01100101 \\
01100101 \\
\hline 10001110000010
\end{array}
$$

10001110000010_{2} shifted right 11_{10} bits is : $100_{2}=4_{10}$.
If the modulus is required, it can be calculated as: $101-(4 \times 23)=9$

Division by a Constant on ARM

On the Arm, we can divide by 23 very quickly:

```
@ The following code will calculate r2/23
@ It will leave the quotient in r0 and the remainder in r1
@ It will also use register r3 as a temporary variable
ldr r3,=0x590B2165 @ load 1/23 shifted left by 35 bits
smull r0,r1,r3,r2 @ multiply (3 to 7 clock cycles)
mov r3,r2,asr #31 @ get sign of numerator (0 or -1)
rsb r0,r3,r1,asr#3 @ shift right and adjust for sign
    @ now get the modulus, if needed
mov r1,#23 @ move denominator to r1
mul r1,r1,r0 @ multiply denominator by quotient
sub r1,r2,r1 @ subtract that from numerator
```


Formula for Finding Reciprocal

The value of m can be directly computed by using the equation

$$
\begin{equation*}
m=\frac{2^{p+\left\lfloor\log _{2} c\right\rfloor-1}}{c}+1, \tag{1}
\end{equation*}
$$

where p is the desired number of bits of precision. For example, to divide by the constant 33 , with 16 bits of precision, we compute m as

$$
m=\frac{2^{16+5-1}}{33}+1=\frac{2^{20}}{33}+1=31776.030303 \approx 31776=7 \mathrm{C} 20_{16}
$$

Therefore, multiplying a 16 bit number by $7 \mathrm{C} 20_{16}$ and then shifting right 20 bits is equivalent to dividing by 33 .

Uses for These Techniques

98% of computing devices are embedded.

- In 2012, the global market for embedded systems was about $\$ 1.47$ trillion.
- The annual growth rate is about 14%
- Forecasts predict over 40 billion devices will be sold in 2020.

Most embedded systems are cost sensitive and use very small processors.

Some very common embedded processors are the:

- PicMicro PIC family
- Atmel AVR family,
- Intel 8051 family, and the
- Motorola 68HC11 family.

The 68HC11, 8051, AVR200+, and PIC18+ all have an 8-bit by 8-bit hardware multiply that produces a 16 -bit result.

Smaller, cheaper versions of AVR and PIC have no hardware multiply at all.

Summary

- Understanding the basic mathematical operations can enable the assembly programmer to
- work with integers of any arbitrary size
- achieve efficiency that cannot be matched by any other language.

However!

- It is best to focus the assembly programming on areas where the greatest gains can be made.

